(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: CountUpRound
public class CountUpRound{
public static int round (int x) {

if (x % 2 == 0) return x;
else return x+1;
}


public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();



while (x > y) {

y = round(y+1);

}


}

}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
CountUpRound.main([Ljava/lang/String;)V: Graph of 193 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: CountUpRound.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 27 rules for P and 0 rules for R.


P rules:
300_0_main_Load(EOS(STATIC_300), i18, i46, i18) → 302_0_main_LE(EOS(STATIC_302), i18, i46, i18, i46)
302_0_main_LE(EOS(STATIC_302), i18, i46, i18, i46) → 311_0_main_LE(EOS(STATIC_311), i18, i46, i18, i46)
311_0_main_LE(EOS(STATIC_311), i18, i46, i18, i46) → 318_0_main_Load(EOS(STATIC_318), i18, i46) | >(i18, i46)
318_0_main_Load(EOS(STATIC_318), i18, i46) → 324_0_main_ConstantStackPush(EOS(STATIC_324), i18, i46)
324_0_main_ConstantStackPush(EOS(STATIC_324), i18, i46) → 331_0_main_IntArithmetic(EOS(STATIC_331), i18, i46, 1)
331_0_main_IntArithmetic(EOS(STATIC_331), i18, i46, matching1) → 338_0_main_InvokeMethod(EOS(STATIC_338), i18, +(i46, 1)) | &&(>=(i46, 0), =(matching1, 1))
338_0_main_InvokeMethod(EOS(STATIC_338), i18, i50) → 345_0_round_Load(EOS(STATIC_345), i18, i50, i50)
345_0_round_Load(EOS(STATIC_345), i18, i50, i50) → 363_0_round_ConstantStackPush(EOS(STATIC_363), i18, i50, i50, i50)
363_0_round_ConstantStackPush(EOS(STATIC_363), i18, i50, i50, i50) → 373_0_round_IntArithmetic(EOS(STATIC_373), i18, i50, i50, i50, 2)
373_0_round_IntArithmetic(EOS(STATIC_373), i18, i50, i50, i50, matching1) → 383_0_round_NE(EOS(STATIC_383), i18, i50, i50, %(i50, 2)) | =(matching1, 2)
383_0_round_NE(EOS(STATIC_383), i18, i50, i50, matching1) → 391_0_round_NE(EOS(STATIC_391), i18, i50, i50, 1) | =(matching1, 1)
383_0_round_NE(EOS(STATIC_383), i18, i50, i50, matching1) → 392_0_round_NE(EOS(STATIC_392), i18, i50, i50, 0) | =(matching1, 0)
391_0_round_NE(EOS(STATIC_391), i18, i50, i50, matching1) → 397_0_round_Load(EOS(STATIC_397), i18, i50, i50) | &&(>(1, 0), =(matching1, 1))
397_0_round_Load(EOS(STATIC_397), i18, i50, i50) → 405_0_round_ConstantStackPush(EOS(STATIC_405), i18, i50, i50)
405_0_round_ConstantStackPush(EOS(STATIC_405), i18, i50, i50) → 413_0_round_IntArithmetic(EOS(STATIC_413), i18, i50, i50, 1)
413_0_round_IntArithmetic(EOS(STATIC_413), i18, i50, i50, matching1) → 423_0_round_Return(EOS(STATIC_423), i18, i50, +(i50, 1)) | &&(>(i50, 0), =(matching1, 1))
423_0_round_Return(EOS(STATIC_423), i18, i50, i58) → 432_0_main_Store(EOS(STATIC_432), i18, i58)
432_0_main_Store(EOS(STATIC_432), i18, i58) → 460_0_main_JMP(EOS(STATIC_460), i18, i58)
460_0_main_JMP(EOS(STATIC_460), i18, i58) → 840_0_main_Load(EOS(STATIC_840), i18, i58)
840_0_main_Load(EOS(STATIC_840), i18, i58) → 294_0_main_Load(EOS(STATIC_294), i18, i58)
294_0_main_Load(EOS(STATIC_294), i18, i46) → 300_0_main_Load(EOS(STATIC_300), i18, i46, i18)
392_0_round_NE(EOS(STATIC_392), i18, i50, i50, matching1) → 400_0_round_Load(EOS(STATIC_400), i18, i50, i50) | =(matching1, 0)
400_0_round_Load(EOS(STATIC_400), i18, i50, i50) → 408_0_round_Return(EOS(STATIC_408), i18, i50, i50, i50)
408_0_round_Return(EOS(STATIC_408), i18, i50, i50, i50) → 416_0_main_Store(EOS(STATIC_416), i18, i50)
416_0_main_Store(EOS(STATIC_416), i18, i50) → 425_0_main_JMP(EOS(STATIC_425), i18, i50)
425_0_main_JMP(EOS(STATIC_425), i18, i50) → 455_0_main_Load(EOS(STATIC_455), i18, i50)
455_0_main_Load(EOS(STATIC_455), i18, i50) → 294_0_main_Load(EOS(STATIC_294), i18, i50)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
300_0_main_Load(EOS(STATIC_300), x0, x1, x0) → 300_0_main_Load(EOS(STATIC_300), x0, +(x1, 2), x0) | &&(&&(>(+(x1, 1), 0), <(x1, x0)), =(1, %(+(x1, 1), 2)))
300_0_main_Load(EOS(STATIC_300), x0, x1, x0) → 300_0_main_Load(EOS(STATIC_300), x0, +(x1, 1), x0) | &&(&&(>(+(x1, 1), 0), <(x1, x0)), =(0, %(+(x1, 1), 2)))
R rules:

Filtered ground terms:



300_0_main_Load(x1, x2, x3, x4) → 300_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_300_0_main_Load1(x1, x2, x3, x4, x5) → Cond_300_0_main_Load1(x1, x3, x4, x5)
Cond_300_0_main_Load(x1, x2, x3, x4, x5) → Cond_300_0_main_Load(x1, x3, x4, x5)

Filtered duplicate args:



300_0_main_Load(x1, x2, x3) → 300_0_main_Load(x2, x3)
Cond_300_0_main_Load(x1, x2, x3, x4) → Cond_300_0_main_Load(x1, x3, x4)
Cond_300_0_main_Load1(x1, x2, x3, x4) → Cond_300_0_main_Load1(x1, x3, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
300_0_main_Load(x1, x0) → 300_0_main_Load(+(x1, 2), x0) | &&(&&(>(x1, -1), <(x1, x0)), =(1, %(+(x1, 1), 2)))
300_0_main_Load(x1, x0) → 300_0_main_Load(+(x1, 1), x0) | &&(&&(>(x1, -1), <(x1, x0)), =(0, %(+(x1, 1), 2)))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
300_0_MAIN_LOAD(x1, x0) → COND_300_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), =(1, %(+(x1, 1), 2))), x1, x0)
COND_300_0_MAIN_LOAD(TRUE, x1, x0) → 300_0_MAIN_LOAD(+(x1, 2), x0)
300_0_MAIN_LOAD(x1, x0) → COND_300_0_MAIN_LOAD1(&&(&&(>(x1, -1), <(x1, x0)), =(0, %(+(x1, 1), 2))), x1, x0)
COND_300_0_MAIN_LOAD1(TRUE, x1, x0) → 300_0_MAIN_LOAD(+(x1, 1), x0)
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 300_0_MAIN_LOAD(x1[0], x0[0]) → COND_300_0_MAIN_LOAD(x1[0] > -1 && x1[0] < x0[0] && 1 = x1[0] + 1 % 2, x1[0], x0[0])
(1): COND_300_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 300_0_MAIN_LOAD(x1[1] + 2, x0[1])
(2): 300_0_MAIN_LOAD(x1[2], x0[2]) → COND_300_0_MAIN_LOAD1(x1[2] > -1 && x1[2] < x0[2] && 0 = x1[2] + 1 % 2, x1[2], x0[2])
(3): COND_300_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 300_0_MAIN_LOAD(x1[3] + 1, x0[3])

(0) -> (1), if (x1[0] > -1 && x1[0] < x0[0] && 1 = x1[0] + 1 % 2x1[0]* x1[1]x0[0]* x0[1])


(1) -> (0), if (x1[1] + 2* x1[0]x0[1]* x0[0])


(1) -> (2), if (x1[1] + 2* x1[2]x0[1]* x0[2])


(2) -> (3), if (x1[2] > -1 && x1[2] < x0[2] && 0 = x1[2] + 1 % 2x1[2]* x1[3]x0[2]* x0[3])


(3) -> (0), if (x1[3] + 1* x1[0]x0[3]* x0[0])


(3) -> (2), if (x1[3] + 1* x1[2]x0[3]* x0[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@326a40d6 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 300_0_MAIN_LOAD(x1, x0) → COND_300_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), =(1, %(+(x1, 1), 2))), x1, x0) the following chains were created:
  • We consider the chain 300_0_MAIN_LOAD(x1[0], x0[0]) → COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0]), COND_300_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 300_0_MAIN_LOAD(+(x1[1], 2), x0[1]) which results in the following constraint:

    (1)    (&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2)))=TRUEx1[0]=x1[1]x0[0]=x0[1]300_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧300_0_MAIN_LOAD(x1[0], x0[0])≥COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])∧(UIncreasing(COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[0], -1)=TRUE<(x1[0], x0[0])=TRUE>=(1, %(+(x1[0], 1), 2))=TRUE<=(1, %(+(x1[0], 1), 2))=TRUE300_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧300_0_MAIN_LOAD(x1[0], x0[0])≥COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])∧(UIncreasing(COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(2)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(4)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] + [(2)bni_12]x0[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (6) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (7)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(4)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] + [(2)bni_12]x0[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)







For Pair COND_300_0_MAIN_LOAD(TRUE, x1, x0) → 300_0_MAIN_LOAD(+(x1, 2), x0) the following chains were created:
  • We consider the chain COND_300_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 300_0_MAIN_LOAD(+(x1[1], 2), x0[1]) which results in the following constraint:

    (8)    (COND_300_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_300_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥300_0_MAIN_LOAD(+(x1[1], 2), x0[1])∧(UIncreasing(300_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(300_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(300_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(300_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(300_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)







For Pair 300_0_MAIN_LOAD(x1, x0) → COND_300_0_MAIN_LOAD1(&&(&&(>(x1, -1), <(x1, x0)), =(0, %(+(x1, 1), 2))), x1, x0) the following chains were created:
  • We consider the chain 300_0_MAIN_LOAD(x1[2], x0[2]) → COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2]), COND_300_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 300_0_MAIN_LOAD(+(x1[3], 1), x0[3]) which results in the following constraint:

    (13)    (&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2)))=TRUEx1[2]=x1[3]x0[2]=x0[3]300_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧300_0_MAIN_LOAD(x1[2], x0[2])≥COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])∧(UIncreasing(COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥))



    We simplified constraint (13) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (14)    (>(x1[2], -1)=TRUE<(x1[2], x0[2])=TRUE>=(0, %(+(x1[2], 1), 2))=TRUE<=(0, %(+(x1[2], 1), 2))=TRUE300_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧300_0_MAIN_LOAD(x1[2], x0[2])≥COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])∧(UIncreasing(COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥))



    We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (15)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[2] + [(-1)bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (16)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[2] + [(-1)bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (17)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[2] + [(-1)bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (x1[2] ≥ 0∧x0[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(4)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[2] + [(2)bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (18) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (19)    (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(4)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[2] + [(2)bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)







For Pair COND_300_0_MAIN_LOAD1(TRUE, x1, x0) → 300_0_MAIN_LOAD(+(x1, 1), x0) the following chains were created:
  • We consider the chain COND_300_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 300_0_MAIN_LOAD(+(x1[3], 1), x0[3]) which results in the following constraint:

    (20)    (COND_300_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥NonInfC∧COND_300_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥300_0_MAIN_LOAD(+(x1[3], 1), x0[3])∧(UIncreasing(300_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    ((UIncreasing(300_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    ((UIncreasing(300_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    ((UIncreasing(300_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)



    We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (24)    ((UIncreasing(300_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 300_0_MAIN_LOAD(x1, x0) → COND_300_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), =(1, %(+(x1, 1), 2))), x1, x0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])), ≥)∧[(4)bni_12 + (-1)Bound*bni_12] + [bni_12]x1[0] + [(2)bni_12]x0[0] ≥ 0∧[1 + (-1)bso_13] ≥ 0)

  • COND_300_0_MAIN_LOAD(TRUE, x1, x0) → 300_0_MAIN_LOAD(+(x1, 2), x0)
    • ((UIncreasing(300_0_MAIN_LOAD(+(x1[1], 2), x0[1])), ≥)∧[bni_14] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)

  • 300_0_MAIN_LOAD(x1, x0) → COND_300_0_MAIN_LOAD1(&&(&&(>(x1, -1), <(x1, x0)), =(0, %(+(x1, 1), 2))), x1, x0)
    • (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(4)bni_16 + (-1)Bound*bni_16] + [bni_16]x1[2] + [(2)bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)

  • COND_300_0_MAIN_LOAD1(TRUE, x1, x0) → 300_0_MAIN_LOAD(+(x1, 1), x0)
    • ((UIncreasing(300_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[bni_18] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(300_0_MAIN_LOAD(x1, x2)) = [2] + [2]x2 + [-1]x1   
POL(COND_300_0_MAIN_LOAD(x1, x2, x3)) = [1] + [2]x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(-1) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(=(x1, x2)) = [-1]   
POL(1) = [1]   
POL(+(x1, x2)) = x1 + x2   
POL(2) = [2]   
POL(COND_300_0_MAIN_LOAD1(x1, x2, x3)) = [2] + [2]x3 + [-1]x2   
POL(0) = 0   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}   
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}   

The following pairs are in P>:

300_0_MAIN_LOAD(x1[0], x0[0]) → COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])
COND_300_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 300_0_MAIN_LOAD(+(x1[1], 2), x0[1])
COND_300_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 300_0_MAIN_LOAD(+(x1[3], 1), x0[3])

The following pairs are in Pbound:

300_0_MAIN_LOAD(x1[0], x0[0]) → COND_300_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), =(1, %(+(x1[0], 1), 2))), x1[0], x0[0])
300_0_MAIN_LOAD(x1[2], x0[2]) → COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])

The following pairs are in P:

300_0_MAIN_LOAD(x1[2], x0[2]) → COND_300_0_MAIN_LOAD1(&&(&&(>(x1[2], -1), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 300_0_MAIN_LOAD(x1[2], x0[2]) → COND_300_0_MAIN_LOAD1(x1[2] > -1 && x1[2] < x0[2] && 0 = x1[2] + 1 % 2, x1[2], x0[2])


The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_300_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 300_0_MAIN_LOAD(x1[1] + 2, x0[1])
(3): COND_300_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 300_0_MAIN_LOAD(x1[3] + 1, x0[3])


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(14) TRUE